
C A C T I 1

Manual for the CASAA Application for

Coding Treatment Interactions

(CACTI): A free, open-source program

for rating client and provider speech.

This manual is currently under revision (15 May 2012). Do not reference or publish without

permission.

Kevin A. Hallgren, Lisa H. Glynn, Jon M. Houck, and Theresa B. Moyers

Center on Alcoholism, Substance Abuse, and Addictions

University of New Mexico

casaa.unm.edu

C A C T I 2

Overview

The CASAA Application for Coding Treatment Interactions (CACTI) was developed as an
instrument to facilitate accurate, sequential parsing and coding of human verbal interactions.
CACTI has a simple interface for users to partition verbal interactions into discrete utterances that
may then be coded by individual raters. Coding data for each utterance, including the beginning
and ending times, byte numbers, and rater codes, are stored sequentially in a tab-delimited text file
that may then be processed for data analyses in statistical packages like GSEQ, SPSS, R, and SAS.

CACTI provides clear advantages over other coding software. First, CACTI allows a user to code
complex verbal behavior without the need for the speech to be transcribed manually, which can
save money and time. Second, CACTI saves all data digitally, which can be manipulated directly
using other spreadsheet or statistical packages, thus reducing the cost and error associated with
the manual data entry necessary for transcripts coded on paper. Third, CACTI retains the
temporal sequence of codes, thus allowing researchers to assess not only the frequency of
behavior counts, but also the patterns of sequences in which the behavior occurs. Fourth,
CACTI was designed for use in studies where audio recordings are initially parsed into discrete
units, which are subsequently coded by trained raters, a feature which other software packages do
not offer.

CACTI is free and open-source, per the terms of the GNU Public License:
http://www.gnu.org/licenses/gpl-3.0.txt. Anyone is free to download, modify, and redistribute
the software and source code, which are available at https://code.google.com/p/ctcsu-player/.
Note that this software is unsupported by UNM CASAA.

CACTI was developed by Alex Manuel, a computer scientist at the University of New Mexico,
and Carl Staaf, a consultant at Robot Super Brain, in conjunction with Drs. Theresa B. Moyers
and Jon Houck of the UNM Center on Alcoholism, Substance Abuse, and Addictions. Funding
for the development of CACTI was provided by NIDA R01DA021227.

C A C T I 3

Top 10 reasons to use the CACTI

1. Reduces money and time spent on transcription of lengthy interactions

2. Stores all data digitally, thus reducing error and time associated with manual data-entry

3. Is open source software, and thus free to use, edit, or redistribute for anyone and no
entity profits off of its use

4. Store sequential information for each utterance, allowing for more sophisticated data
analyses than simple frequency counts

5. Is easy to use

6. Saves paper necessary for printing lengthy transcribed conversations

7. Is adaptable to be edited to work with most coding systems, including those that use
behavior counts and global Likert-type ratings

8. Is developed by social scientists, for social scientists

9. Is Java-based, and thus should run nearly uniformly across operating systems

10. Coded interactions are pre-parsed, and thus the same pre-parsed units of speech can be
coded by multiple coders to assess utterance-by-utterance inter-rater reliability that may be
necessary for sequential coding studies.

C A C T I 4

Interface

Parsing GUI

C A C T I 5

Coding GUI using MISC 2.5 codes.

C A C T I 6

Global Ratings GUI

C A C T I 7

Basics

Installing the Software

Proper use of the software requires that machines are updated with the most current version of
Java, which can be downloaded for free at http://www.java.com. The latest software release may
be downloaded at http://code.google.com/p/ctcsu-player/downloads/list and the source code is
available at http://code.google.com/p/ctcsu-player/source/checkout.

To use CACTI, download the file CACTI.zip and extract the file on your local disk in a location
of your choice. The zip file contains the following files:

• An executable file that opens CACTI for parsing, sequential coding, or global coding.

• An XML file that allows users to adapt CACTI to other coding systems (explained
below).

• An images folder that contains a JPG graphic that appears as the splash screen upon
opening CACTI.

• The operation manual and user configuration guide, included in the CACTI package,
which are optional help texts that provide an orientation to configuring and using
CACTI.

To open the software, double click on the CACTI.jar file.

General Format of the Software

Three basic coding procedures are available: parsing, behavior coding, and global coding. An
audio file must first be parsed before it is behavior coded; however, global scoring may be done
irrespective of whether a file was parsed or coded, and the sequence in which global scoring is
performed can thus be determined by the research protocol for the given study.

Parsing: Parsing, or unitizing, refers to the process of breaking verbal information into basic,
discrete units (called utterances or parses). For example, a user could parse the dialogue “How
much did you drink?” “About 2 glasses of wine” into two discrete utterances reflecting the
speech unit of the interviewer and the speech unit of the interviewee. A user may also wish to
parse a single stream verbal behavior into multiple utterances if it reflects qualitatively different
types of language. For example, “You must miss having your children at home. When was the
last time you saw them?” could be parsed into two utterances that represent the two different
expressions in the single stream of speech.

Behavior coding: Before a file is coded it must first be parsed. During the behavior
coding process, a single categorical language code is assigned to each utterance. Each utterance is
assigned a code.

C A C T I 8

The codes used during the behavior coding process will depend on the coding system employed
for a given research study. For example, using a coding system may dictate that the utterances
“[1] You must miss having your children at home. [2] When was the last time you saw them?”
would be coded as a [1] therapist complex reflection, neutral and a [2] therapist closed question.

Global ratings: Global ratings are meant to capture the gestalt of an entire session or
recording, using multiple ratings provided on Likert-type scales. They may be adjusted
throughout the listening period of a recording or may be assigned at the end.

Playing an audio file without coding: The CACTI software may be used to
play an audio file without coding or parsing (akin to a simple media player). To play an audio file
without the intention of coding, select File > Load audio file… and select the audio file you wish
to play.

File formats for behavior coding: Waveform Audio Format (WAV or WAVE)
files have been tested using and are found to work for all aspects of the software. It is
recommended that WAV files are used for all aspects of coding. WAV format is advantageous
because it contains a constant number of bytes per second and works well with the software,
which tracks both the time stamp and the byte number for parsing and behavior coding. Other
formats, such as MP3, do not have a constant number of bytes per second, and parsing and
behavior code decisions may be imprecise and/or inconsistent when using MP3s.

C A C T I 9

Customizing CACTI for your coding

system
Before behavior coding, a user will need to customize CACTI to read the coding system they’re
using for their study. CACTI allows users to customize behavior codes and global ratings.

The GUI can be changed by editing the userConfiguration.xml file included with the software.
This file should be edited in Notepad or another simple text-editing program, NOT with a word
processor such as Word or WordPad. The userConfiguration.xml file is loaded automatically
when CACTI starts, and therefore CACTI must be restarted for any changes in
userConfiguration.xml to take effect. Before making changes to this file, we recommend saving
an unchanged copy of this file that the user may revert to in case of any unidentifiable errors.

A list of keywords that allow users to modify CACTI via userConfiguration.xml is included
below.

XML keyword Description Arguments

<code> Declares a behavior code name: Character identifier appearing
on interface and .casaa file

value: Numeric identifier appearing
in .casaa file

<button> Places a declared behavior
code on the interface as a
button

code: name of code to appear (must
match a name in <code>)

key: shortcut key, e.g., “s”, “ctrl s”,
“ctrl shift s”

<group> Groups multiple behavior
codes under one button

label: Label appearing on interface
for group of buttons

<codeControls> Declares that codes are to be
placed on the interface

panel: Specifies which side of
screen code will appear on, “left” or
“right”

label: Specifies the label to appear
on the interface for the set of
behavior codes

<global> Declares a global rating name: Character identifier appearing
in .casaa file

label: Label appearing on interface

value: Numeric identifier appearing

C A C T I 1 0

in .casaa file

defaultRating: Value on Likert
scale that appears by default when a
new file is coded

minRating: Minimum value on
likert scale

maxRating: Maximum value on
likert scale

<slider> Places a declared global
rating on the interface as a
slider

slider: Name of global that is to
appear (must match a name value in
<global> code)

<globalControls> Declares that global ratings
are to be placed on the
interface

panel: Specifies which side of
screen global rating will appear on,
“left” or “right”

label: Specifies the label to appear
on the interface for the set of global
controls

<row> Begins a new row when
placing buttons

none

<spacer/> Placeholder to leave empty
space on the behavior coding
or global ratings interface

none

General structure of userConfiguration.xml

The userConfiguration.xml file is organized as an XML file with all customizable components
placed within XML tags. The XML file must begin with <userConfiguration> and end
with </userConfiguration>. Comments may be made using standard HTML
commenting syntax: <!-- Example of a comment-->.

Customizing behavior codes and subcodes

Behavioral codes must first be initially declared, after which the Graphical User Interface (GUI)
must be setup to have the codes displayed as buttons.

Behavioral codes are declared within the <codes> </codes> XML tag. Each code is
declared with the following elements:

• name: a unique string code name

• value: a unique integer value associated with that code

C A C T I 1 1

Example:

 <codes>

 <code name="CQ0" value="11"/>

 <code name="OQ0" value="14"/>

 <code name="SR-" value="18"/>

 <code name="SR0" value="19"/>

 <code name="SR+" value="20"/>

 </codes>

The above syntax declares five codes that can subsequently be setup to be displayed on the GUI.

Once each code has been declared, the user must establish how the buttons for these codes are to
be displayed on the GUI. CACTI allows users to choose whether particular code buttons are to
appear on the left or right panels, how these buttons are arranged in rows, and how multiple
codes may be subsumed under one button (optional). The behavioral coding GUI is setup for
each panel (left or right) using the <codeControls> </codeControls> XML tag.
<codeControls> has the following elements:

• panel: must be “left” or “right” to indicate the setup for either panel

• label: specifies a label to appear on the GUI for each panel

Buttons are arranged in rows within the <codeControls> tag by using the <rows>
</rows> XML tag, which delineates each row of codes. The <button/> XML tag is used
between the <rows> </rows> tag to list each button that should appear in that row and
specifies which code (declared above) the button corresponds to. The <button/> tag has the
following elements:

• code: must be included for each button and corresponds with the code name declared
above

• key (optional): allows users to select keyboard shortcuts for that button. Examples
include “N”, “shift N”, and “shift ctrl N”.

Multiple codes may be subsumed under a single button by placing multiple <button/> tags
within a <group> </group> tag. For example, if a coding system specifies that certain
behavior codes also must have a subcode for the valence or magnitude of that behavior code, it
may be appropriate to place the subcodes within one common group.

The <spacer/> tag will create blank space with an empty column in the current row.

Example:

<codeControls panel="left" label="Therapist">

C A C T I 1 2

 <row>

 <button code="CQ0" key="C"/>

 <button code="OQ0" key="O"/>

 </row>

 <row>

 <spacer/> <!-- blank space on GUI -->

 <group label="SR">

 <button code="SR-" key="shift A"/>

 <button code="SR0" key="ctrl shift S"/>

 <button code="SR+" key="D"/>

 </group>

 </row>

</codeControls>

The above syntax specifies the setup for the left panel of the behavior coding GUI, which will be
labeled as “Therapist”, presumably because it contains buttons for therapist behavior codes.
Buttons for the codes CQ0 and OQ0 will be displayed separately in the first row. Buttons for SR-
, SR0, and SR+ will be displayed under one button in the next row labeled SR, which upon
clicking, will allow users to select the appropriate SR-, SR0, or SR+ code. The buttons may also
be activated by using the C, O, shift+A, ctrl+shift+S, or D keyboard shortcuts as specified.

Resulting code layout from above syntax

Customizing global ratings

Like behavior codes, global ratings must first be initially declared, then setup to be displayed on
the global coding GUI.

Global ratings are declared within the <globals> </globals> XML tag. Each global
rating is declared with the following elements:

• name: a unique string name for that global rating

• label: a label to appear on the GUI for the global

• value: a unique integer value corresponding with the global name

• minRating (optional): The minimum rating displayed on the Likert-type scale. The
default is 1.

C A C T I 1 3

• maxRating (optional): The maximum rating displayed on the Likert-type scale. The
default is 5.

• defaultRating (optional): The default rating assigned to this code. The default is 1.

Example:

<globals>

 <global name="ACC" label="Acceptance" value="0"

defaultRating="3"/>

 <global name="EMP" label="Empathy" value="1"

defaultRating="3"/>

 <global name="SEL" label="Self Exploration" value="6"

defaultRating="1" minRating="1" maxRating="10"/>

</globals>

The above syntax declares three global rating variables, ACC, EMP, and SEL. ACC and EMP
use the default 1 to 5 Likert-type scale, and SEL uses a 1 to 10 Likert-type scale.

Once each global rating has been declared, the user must establish how the sliders for these global
ratings are to be displayed on the GUI. CACTI allows users to choose whether particular global
ratings are to appear on the left or right panels and the order that they should appear in.

The <globalControls> </globalControls> tag allows users to place global ratings
on the GUI. Users must specify a left or right panel for placing global-rating scales. Global-rating
scales are placed using the <slider/> tag, specifying which global is to be placed using the global
element, which must correspond with a global rating declared above. The <spacer/> tag may
be placed to add blank space, manifested as an empty row in the current panel.

Example:

 <globalControls panel="left">

 <slider global="ACC"/>

 <slider global="EMP"/>

 <spacer/> <!-- blank space on GUI -->

 <slider global="SEL"/>

 </globalControls>

The above syntax places three global ratings for ACC, EMP, and SEL in the left panel.

C A C T I 1 4

Parsing and coding an audio recording
Before an audio file is coded, it is required that a parser divides the audio file into mutually
exclusive (but not necessarily exhaustive) units called utterances or parses. Parsing data, including
beginning and ending times and byte numbers for each parse, are stored in a file with the
extension .parse. Once parsed, parsing files are loaded through the CACTI and utterances are
assigned behavior codes.

Parsing an audio file

To begin parsing an audio file, select Start a New Parse File from the Parse Utterances menu, and
enter a name for the resulting .parse file that will be created, then select the audio file you wish to
code. The .parse file will be created once the user enters the first complete utterance, and is
updated automatically each time a new utterance is created.

The audio file must be in WAV format, not MP3 or other audio formats. This is mostly due to
the variable number of bytes per second used in MP3 file structures. Because WAV files use a
constant number of bytes per second, WAV file playback does not have this problem, and we
strongly encourage only using WAV files with CACTI. Audacity (audacity.sourceforge.net) is a
free and open source audio editor that will convert audio files from a variety of audio formats to
WAV.

Press Play to begin audio playback. The cursor will begin to move on the audio timeline showing
where the current playback is within the larger file, and the audio will play over the computer’s
speakers.

Press Start to indicate places when a new utterance begins and End to indicate where a parse
ends. The placement of utterances will coincide with the timing of the audio playback when the
Start or End buttons were pressed. Pressing Start multiple times in a row will automatically
execute the End command, creating a sequence of utterances without gaps between them.
Utterances will be displayed on the timeline to help with visualizing of where they have been
placed. Utterances will appear in blue except for the most recent one, which will appear in green.
Timing information for starting points of each utterance will appear on the timeline.

The CACTI parsing interface will display the timing information and byte numbers for the
utterance that is currently being played, as well as for the utterance immediately before the current
utterance.

A user may continue parsing an unfinished .parse file by selecting Resume Parsing a Parse File
from the Parse Utterances menu.

Parsing Commands

• Start: Starts a new utterance. If pressed multiple times in a row, also ends an open
utterance and starts a new utterance.

• End: Ends an open utterance. If pressed multiple times in a row, extends the end of the
last utterance. Does not need to be used if a file is exhaustively parsed (i.e., without gaps
between utterances.

C A C T I 1 5

• Pause/Play: Pauses or plays the loaded audio

• Replay: Backs up the audio playback to the beginning of the last utterance without
changing any parsing information

• Unparse: Deletes the last utterance without changing the playback

• Unparse & Replay: Deletes the last utterance and moves the audio playback to the
beginning of the deleted utterance

• Rewind 5s: Backs up the audio playback by five seconds without changing any
parsing information

Coding an audio file

To code a file after it’s been parsed, select Start Coding a Parse File from the Code Utterances
menu, then select the .parse file you wish to code and a name for the .casaa file that will be
created. The .casaa file will be created once the user enters the first behavior code, and is updated
automatically each time a code is entered.

Press Play to begin audio playback.

Press any of the code buttons on the GUI to enter a code for the utterance that is currently
playing. Codes may be entered in the middle of an utterance while the audio from the utterance is
currently being played, or at the end of an utterance once it has been fully heard. If a user reaches
the end of an utterance without entering a code, the audio playback will pause until a code is
entered if the Pause if Uncoded box is checked.

If multiple codes are entered within a single utterance, the last code entered will be kept, thus a
code may be changed by pressing the new coding option as long as the playback remains in the
same utterance.

The CACTI coding interface will display the timing information, byte numbers, and codes entered
for the utterance that is currently being played, as well as for the utterances immediately before
and after the current utterance.

A user may continue coding an unfinished .casaa file by selecting Resume Coding a Casaa File
from the Code Utterances menu.

Coding Commands

• Pause/Play: Pauses or plays the loaded audio

• Replay: Backs up the audio playback to the beginning of the current utterance without
changing any coding information

• Uncode: Deletes the last code that was entered and moves the audio playback to the
beginning of that utterance

• Rewind 5s: Backs up the audio playback by five seconds without changing any coding
information

• Pause if uncoded: If checked, forces audio playback to stop at the end of an
utterance if it has not been coded, requiring that all utterances have a behavior code
entered. If unchecked, utterances may be left uncoded if the user does not enter a code
before the end of the utterance.

C A C T I 1 6

• Various Behavior Codes: Behavior codes and subcodes that may be entered for
each utterance. These may be changed by editing the userConfiguration.xml file, as
described above.

Assigning global ratings

To assign global ratings for an audio file, select Score Global Ratings from the Global Ratings
menu, then enter the file name of the .global file to be created and select the audio file to be
associated with the global ratings.

Press play to begin the audio playback. Global rating variables with Likert response options may
be adjusted by moving the sliders for each global rating. Only integer values may be assigned for
global ratings. Global ratings are written to the .global file automatically.

Options

Options may be accessed under File > Options.

Volume: Volume adjustment is available in all interfaces (parsing, coding, and global ratings)
and adjusts the volume level for audio playback.

Balance: Balance adjustment is available in all interfaces (parsing, coding, and global ratings)
and adjusts the left-right volume balance for audio playback.

File structures

An explanation of the file structures for .parse, .casaa, and .global files are provided below. In
addition, considerations that need to be accounted for during on-the-fly editing are also described.

Each of the file types can be opened, edited, and saved in Notepad or another simple text-editing
program. Files are tab-delimited and therefore may also be read by spreadsheet programs such as
Excel for data analysis; however, we recommend using Notepad or another simple text-editing
program when editing CACTI files in order to best preserve their readability by CACTI.

The beginning line for each file indicates the location and file name for the audio file associated
with the utterances or codes entered. The audio file location or name may be edited manually by
changing this line:

Audio File: C:\wave 1 sessions\Session12.wav

.parse file structure

Parsing data are stored in files with the extension “.parse”. Each utterance is recorded
sequentially on a separate line in the .parse file. For each utterance, the software records a
sequential identifying number, the beginning and end clock times of each utterance, and the
beginning and end byte numbers of each utterances, each separated by tabs.

[ID# begin time end time begin byte end byte]

C A C T I 1 7

0 0:00:01 0:00:07 208000 1264000

1 0:00:07 0:00:15 1264000 2752000

2 0:00:15 0:00:17 2752000 3088000

Note that the software reads the byte numbers, not the clock times, in determining where each
utterance begins and ends with respect to the audio file. The clock times are used to demonstrate
the length of the parse in a manner that is more interpretable to the user than the byte numbers.

If a user changes parsing information manually with simple text-editing programs, it is important
to make sure that both the clock times and byte numbers are both changed to accurately reflect
the desired change. For example, if a user wishes to combine utterances 1 and 2 above by directly
editing the .parse file (note that this is also possible and easier to change within the GUI), they
must do so by replacing the end time of utterance 1 with the end time of utterance 2, and by
replacing the end byte of utterance 1 with the end byte of utterance 2, then delete the line for
utterance 2:

ID# begin time end time begin byte end byte

0 0:00:01 0:00:07 208000 1264000

1 0:00:07 0:00:17 1264000 3088000

.casaa file structure

The .casaa file builds on a pre-existing .parse file by assigning a categorical language code to each
utterance.

.casaa files contain records for utterances and behavior codes assigned to them. Each utterance is
recorded sequentially on a separate line in the .casaa file. For each utterance, the software records
a sequential identifying number, the beginning and end clock times for each utterance, the
beginning and end byte numbers of each utterance, a number corresponding to the language code
for that utterance, and the letter abbreviation for the behavior code, each separated by tabs.

[ID# begin time end time begin byte end byte numcode char code]

0 0:00:01 0:00:07 208000 1264000 11 CQ0

1 0:00:07 0:00:15 1264000 2752000 44 FN

2 0:00:15 0:00:17 2752000 3088000 9 GI

Note that the software records two variables reflecting behavior codes, one a numeric code and
one a string code. When changing the .casaa files by manually editing a code that was entered, it is
important to make sure that both the numeric and string identifiers are changed together (note
that it is also possible and easier to change these within the GUI). For example, if a user wishes to
change utterance 1 to CQ0, they must change the string code from FN to CQ0, and change the
numeric code from 44 to 11:

[ID# begin time end time begin byte end byte numcode char code]

0 0:00:01 0:00:07 208000 1264000 11 CQ0

1 0:00:07 0:00:15 1264000 2752000 11 CQ0

2 0:00:15 0:00:17 2752000 3088000 9 GI

C A C T I 1 8

.global file structure

Data from global ratings are stored in files with the .global extension. Individual global rating
names are indicated, followed by a tab and the Likert rating entered for that global rating:

ACC: 4

EMP: 4

SEL: 5

.backup files

Backup files are created automatically while parsing or coding behavior counts. These files have
the same file name and extension as the .parse or .casaa files being parsed or coded, with an
additional .backup extension. Backup files are duplicates of .parse or .casaa files that are currently
being parsed or coded, except the data files are updated every 10 utterances rather than every
single utterance. The purpose of these .backup files is to create a safeguard against data loss in the
rare case that an error is incurred while parsing or coding. These .backup files may be saved or
destroyed once a file is completely parsed or coded.

Data analysis

We have provided a basic routine to reformat sets of .casaa files to facilitate data analysis. The
most current version of this MATLAB script, GetCASAA, may be downloaded from
https://code.google.com/p/ctcsu-player/downloads/list. This routine will collect codes into an
.SDS file suitable for lag-sequential analysis using the General Sequential Querier (GSEQ:
http://www2.gsu.edu/~psyrab/gseq/index.html). Sample GSEQ commands are available from
the same location. It will also produce a tab-delimited file with counts for each behavior code
(coding variables in columns × recordings in rows), which can be imported into analysis programs
including Excel, R, SAS, and SPSS. This routine may also be compatible with the open source
MATLAB alternative Octave (https://www.gnu.org/software/octave/), although this has not
been tested. Readers interested in further details about sequential analysis may wish to consult
Roger Bakeman and Vicenç Quera’s Sequential Analysis and Observational Methods for the Behavioral
Sciences, published in 2011 by Cambridge University Press (ISBN: 978-0521171816).

Known issues

While coding an .mp3 file, the start and stop times of utterances do not correspond with the start and stop

times that were entered when the file was parsed.

This issue is due to the variable number of bytes per second used within the .mp3 file structure,
which causes start and stop times to not linearly map onto the corresponding byte numbers for
start and stop times. While it is possible to parse and code MP3 files, it is recommended that files

C A C T I 1 9

in MP3 or other formats are converted to WAV which will avoid this problem. Free programs
like Audacity will convert most audio files to WAV.

Of particular concern for researchers with large amounts of audio data, WAV files are
considerably larger than MP3 files. However, given that hardware for storing large volumes of
data are becoming cheaper, larger in capacity, and smaller in physical size, this issue is becoming
less of a concern. For example, in our lab, the WAV files we code are 10 times larger than MP3
files of the same duration would be, and a 50-minute WAV recording may require 500 MB of disk
space (although the file size and playback quality can be increased or decreased by adjusting the
number of bytes per second in WAV files). With files of this size, we are able to save 1000 50-
minute recordings onto a single 500 GB external hard drive that can be purchased for well under
$100.

This issue does not affect the assignment of global ratings to audio files; MP3 or WAV format is
suitable for assigning global ratings.

Fitting buttons on screen

There is no limit to the number of codes or global ratings that may be used with CACTI.
However, limited screen space may limit the number of codes or global ratings that can fit on the
screen at once. Therefore, smaller computer screens may be particularly affected by this
limitation. Typically, having too many behavior codes or global ratings will cause the CACTI
GUI to be too tall to fit on the monitor. For behavior codes, this may be overcome by increasing
the number of buttons per row (i.e., sacrificing height for width), or by using the <group> tag to
subsume multiple behavior codes under one button, thereby decreasing the amount of space they
take up. Spacing for global ratings may also be adjusted by ensuring that both the left and right
panels have global ratings assigned to them; however, multiple global ratings cannot be subsumed
under one button like behavior codes can. Therefore, in coding systems with large numbers of
global ratings, CACTI may be unsuitable.

